منابع مشابه
BPS Partition Functions for Quiver Gauge Theories: Counting Fermionic Operators
We discuss a general procedure to obtain 1/2 BPS partition functions for generic N = 1 quiver gauge theories. These functions count the gauge invariant operators (bosonic and fermionic), charged under all the global symmetries (mesonic and baryonic), in the chiral ring of a given quiver gauge theory. In particular we discuss the inclusion of the spinor degrees of freedom in the partition functi...
متن کاملThermal Partition Functions for S-branes
We calculate the thermal partition functions of open strings on the S-brane backgrounds (the bouncing or rolling tachyon backgrounds) both in the bosonic and superstring cases. According to [9], we consider the discretized temperatures compatible with the pure imaginary periodicity of tachyon profiles. The “effective Hagedorn divergence” is shown to appear no matter how low temperature is chose...
متن کاملFactorising folds for faster functions
The worker/wrapper transformation is a general technique for improving the performance of recursive programs by changing their types. The previous formalisation (Gill & Hutton, 2009) was based upon a simple fixed point semantics of recursion. In this article we develop a more structured approach, based upon initial algebra semantics. In particular, we show how the worker/wrapper transformation ...
متن کاملNew integral inequalities for $s$-preinvex functions
In this note, we give some estimate of the generalized quadrature formula of Gauss-Jacobi$$underset{a}{overset{a+eta left( b,aright) }{int }}left( x-aright)^{p}left( a+eta left( b,aright) -xright) ^{q}fleft( xright) dx$$in the cases where $f$ and $left| fright| ^{lambda }$ for $lambda >1$, are $s$-preinvex functions in the second sense.
متن کاملBirational Calabi-Yau 3-folds and BPS state counting
This paper contains some applications of Bridgeland-Douglas stability conditions on triangulated categories, and Joyce’s work on counting invariants of semistable objects, to the study of birational geometry. We introduce the notion of motivic Gopakumar-Vafa invariants as counting invariants of D2-branes, and show that they are invariant under birational transformations between Calabi-Yau 3-fol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of High Energy Physics
سال: 2019
ISSN: 1029-8479
DOI: 10.1007/jhep03(2019)172